Deep learning evaluation using deep linguistic processing
نویسندگان
چکیده
We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing ‘deep’ linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail.
منابع مشابه
Deep Learning Embeddings for Discontinuous Linguistic Units
Deep learning embeddings have been successfully used for many natural language processing problems. Embeddings are mostly computed for word forms although a number of recent papers have extended this to other linguistic units like morphemes and phrases. In this paper, we argue that learning embeddings for discontinuous linguistic units should also be considered. In an experimental evaluation on...
متن کاملRobust deep linguistic processing
This dissertation deals with the robustness problem of deep linguistic processing. Hand-crafted deep linguistic grammars provide precise modeling of human languages, but are deficient in their capability of handling ill-formed or extra-grammatical inputs. In this dissertation, we argue that with a series of robust processing techniques, improved coverage can be achieved without sacrificing effi...
متن کاملExtracting Protein-Protein Interactions with Language Modelling
In this paper, we model the corpus-based relation extraction task, namely protein-protein interaction, as a classification problem. In that framework, we first show that standard machine learning systems exploiting representations simply based on shallow linguistic information can rival state-of-the-art systems that rely on deep linguistic analysis. We also show that it is possible to obtain ev...
متن کاملAssigning Deep Lexical Types
Deep linguistic grammars provide complex grammatical representations of sentences, capturing, for instance, long-distance dependencies and returning semantic representations, making them suitable for advanced natural language processing. However, they lack robustness in that they do not gracefully handle words missing from the lexicon of the grammar. Several approaches have been taken to handle...
متن کاملDeep Linguistic Processing with GETARUNS for Spoken Dialogue Understanding
In this paper we will present work carried out to scale up the system for text understanding called GETARUNS, and port it to be used in dialogue understanding. The current goal is that of extracting automatically argumentative information in order to build argumentative structure. The long term goal is using argumentative structure to produce automatic summarization of spoken dialogues. Very mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.01322 شماره
صفحات -
تاریخ انتشار 2017